Перші теплоелектростанції. Вугільна електростанція. Опис технологічної схеми ТЕС

Теплофікаційні станції (ТЕС). Призначення. Види

ТЕС, що виробляє електричну енергію внаслідок перетворення теплової енергії, що виділяється при спалюванні органічного палива. Серед ТЕС переважають теплові паротурбінні (ТПЕМ), на яких теплова енергія використовується в парогенераторі для отримання водяної пари високого тиску, що приводить у обертання ротор парової турбіни, з'єднаний з ротором електричного генератора (звичайно синхронного генератора). Як паливо на таких ТЕС використовують вугілля (переважно), мазут, природний газ, лігніт, торф, сланці.

ТПЕС, що мають як привод електрогенераторів конденсаційні турбіни і не використовують тепло відпрацьованої пари для постачання теплової енергією зовнішніх споживачів, називаються конденсаційними електростанціями. На ДРЕС виробляється біля електроенергії, виробленої ТЕС. ТПЕМ, оснащені теплофікаційними турбінами та віддають тепло відпрацьованої пари промисловим або комунально-побутовим споживачам, званим теплоелектроцентралями (ТЕЦ); ними виробляється біля електроенергії, що виробляється на ТЕС.

ТЕС із приводом електрогенератора від газової турбіни називаються газотурбінними електростанціями (ГТЕС). У камері згоряння ГТЕС спалюють газ або рідке паливо; продукти згоряння з температурою 750-900 З надходять у газову турбіну, що обертає електрогенератор. ККД таких ТЕС зазвичай становить 26-28%, потужність - до кількох сотень МВт. ГТЕС зазвичай застосовують для покриття піків електричного навантаження.

ТЕС із парогазотурбінною установкою, що складається з паротурбінного та газотурбінного агрегатів, називається парогазовою електростанцією (ПГЕС). ккд якої може сягати 42 - 43%. ГТЕС та ПГЕС також можуть відпускати тепло зовнішнім споживачам, тобто працювати як ТЕЦ.

Теплові електростанції використовують поширені паливні ресурси, щодо вільно розміщуються і здатні виробляти електроенергію без сезонних коливань. Їхнє будівництво ведеться швидко і пов'язане з меншими витратами праці та матеріальних засобів. Але ТЕС має істотні недоліки. Вони використовують невідновні ресурси, мають низький ККД (30-35%), надають вкрай негативний впливна екологічну обстановку. ТЕС цього світу щорічно викидають в атмосферу 200-250 млн. т золи і близько 60 млн. тернистого ангідриду, а також поглинають величезну кількість кисню. Встановлено, що вугілля в мікродозах майже завжди містить U238, Th232 та радіоактивний ізотоп вуглецю. Більшість ТЕС Росії не оснащені ефективними системами очищення газів від оксидів сірки і азоту. Хоча установки, що працюють на природному газі екологічно значно чистіше вугільних, сланцевих і мазутних, шкоду природі завдає прокладання газопроводів (особливо в північних районах).

Першорядну роль серед теплових установок грають конденсаційні електростанції (КЕС). Вони тяжіють і до джерел палива, і до споживачів, і тому дуже поширені.

Чим більша КЕС, тим далі вона може передавати електроенергію, тобто. зі збільшенням потужності зростає вплив паливно-енергетичного чинника. Орієнтація на паливні бази відбувається за наявності ресурсів дешевого та нетранспортабельного палива (буре вугілля Кансько-Ачинського басейну) або у разі використання електростанціями торфу, сланців та мазуту (такі КЕС зазвичай пов'язані з центрами нафтопереробки).

ТЕЦ (теплоелектроцентралі) являють собою установки з комбінованого виробництва електроенергії та теплоти. Їхній ККД доходить до 70% проти 30-35% на КЕС. ТЕЦ прив'язані споживачам, т.к. радіус передачі теплоти (пара, гарячої води) становить 15-20 км. Максимальна потужність ТЕЦ менша, ніж КЕС.

Останнім часом з'явилися нові установки:

  • газотурбінні (ГТ) установки, в яких замість парових застосовуються газові турбіни, що знімає проблему водопостачання (на Краснодарській та Шатурській ДРЕС);
  • парогазотурбінні (ПГУ), де тепло відпрацьованих газів використовується для підігріву води та отримання пари низького тиску(на Невинномиській та Карманівській ДРЕС);
  • магнітогідродинамічні генератори (МГД-генератори), які перетворюють тепло безпосередньо на електричну енергію (на ТЕЦ-21 Мосенерго та Рязанської ГРЕС).

У Росії її потужні (2 млн. кВт і більше) побудовано Центральному районі, в Поволжі, на Уралі й у Східної Сибіру.

На базі Кансько-Ачинського басейну створюється сильний паливно-енергетичний комплекс (КАТЕК). У проекті передбачено будівництво восьми ДРЕС потужністю 6,4 млн. кВт. У 1989 р. було введено в дію перший агрегат Березовської ГРЕС-1 (0,8 млн. кВт).



В1879 р., коли Томас Алва Едісонвинайшов лампу розжарювання, почалася епоха електрифікації. Для виробництва великих кількостейелектроенергії потрібно дешеве і доступне паливо. Цим вимогам задовольняло кам'яне вугілля, і перші електростанції (побудовані наприкінці XIX ст. самим Едісоном) працювали на вугіллі.

У міру того, як у країні будувалося все більше і більше станцій, залежність від вугілля зростала. Починаючи з першої світової війни, приблизно половина щорічного виробництва електроенергії в США припадала на теплові електростанції, що працюють на кам'яному вугіллі. У 1986 р. загальна встановлена ​​потужність таких електростанцій становила 289000 МВт, і вони споживали 75% усієї кількості (900 млн. т) вугілля, що видобувається в країні. Враховуючи існуючі невизначеності щодо перспектив розвитку ядерної енергетики та зростання видобутку нафти і природного газу, можна припустити, що до кінця століття теплові станції на вугільному паливі будуть виробляти до 70% всієї електроенергії, що виробляється в країні.

Однак, незважаючи на те, що вугілля довгий час був і ще багато років буде основним джерелом отримання електроенергії (у США на його частку припадає близько 80% запасів усіх видів природних палив), він ніколи не був оптимальним паливом для електростанцій. Питома вміст енергії на одиницю ваги (тобто теплотворна здатність) біля вугілля нижче, ніж у нафти чи газу. Його важче транспортувати, і, крім того, спалювання вугілля викликає низку небажаних екологічних наслідків, зокрема випадання кислотних дощів. З кінця 60-х років привабливість теплових станцій на вугіллі різко пішла на спад у зв'язку з посиленням вимог до забруднення середовища газоподібними та твердими викидами у вигляді золи та шлаків. Витрати на вирішення цих екологічних проблем поряд із зростанням вартості будівництва таких складних об'єктів, якими є теплові електростанції, зробили менш сприятливими перспективи їх розвитку з суто економічної точки зору.

Однак, якщо змінити технологічну базу теплових станцій на вугільному паливі, їхня привабливість може відродитися. Деякі з цих змін мають еволюційний характері і націлені головним чином збільшення потужності існуючих установок. Разом про те розробляються абсолютно нові процеси безвідходного спалювання вугілля, т. е. з мінімальним збитком навколишнього середовища. Впровадження нових технологічних процесів спрямоване на те, щоб майбутні теплові електростанції на вугільному паливі піддавалися ефективному контролю на ступінь забруднення ними навколишнього середовища, мали гнучкість з точки зору можливості використання різних видіввугілля та не вимагали великих термінів будівництва.

Щоб оцінити значення досягнень у технології спалювання вугілля, розглянемо коротко роботу нормальної теплової електростанції на вугільному паливі. Вугілля спалюється в топці парового котла, що є величезною камерою з трубами всередині, в яких вода перетворюється на пару. Перед подачею в топку вугілля подрібнюється в пилюку, за рахунок чого досягається майже така ж повнота згоряння, як і при спалюванні горючих газів. Великий паровий котел споживає щогодини в середньому 500 т пилоподібного вугілля та генерує 2,9 млн. кг пари, що достатньо для виробництва 1 млн. кВт-год електричної енергії. За той же час казан викидає в атмосферу близько 100000 м3 газів.
Генерована пара проходить через пароперегрівач, де його температура і тиск збільшуються, і потім надходить у турбіну високого тиску. Механічна енергія обертання турбіни перетворюється електрогенератором на електричну енергію. Для того щоб отримати більш високий ккд перетворення енергії, пара з турбіни зазвичай повертається в котел для вторинного перегріву і потім рухає одну або дві турбіни низького тиску і тільки після цього конденсується шляхом охолодження; конденсат повертається у цикл котла.

Обладнання теплової електростанції включає механізми паливоподачі, котли, турбіни, генератори, а також складні системи охолодження, очищення димових газів та видалення золи. Всі ці основні та допоміжні системи розраховуються так, щоб працювати з високою надійністю протягом 40 або більше років при навантаженнях, які можуть змінюватись від 20% встановленої потужності станції до максимальної. Капітальні витрати на обладнання типової теплової електростанції потужністю 1000 МВт зазвичай перевищують 1 млрд. дол.

Ефективність, з якою тепло, звільнене при спалюванні вугілля, може бути перетворено на електрику, до 1900 становила лише 5%, але до 1967 досягла 40%. Іншими словами, за період близько 70 років питоме споживання вугілля на одиницю електричної енергії, що виробляється, скоротилося у вісім разів. Відповідно відбувалося і зниження вартості 1 кВт встановленої потужності теплових електростанцій: якщо в 1920 р. вона становила 350 дол. (у цінах 1967 р.), то в 1967 р. знизилася до 130 дол. Ціна електроенергії, що відпускається, також впала за той же період з 25 центів до 2 центів за 1 кВт-чай.

Однак, починаючи з 60-х років темпи прогресу стали падати. Ця тенденція, мабуть, пояснюється тим, що традиційні теплові електростанції досягли межі своєї досконалості, що визначається законами термодинаміки та властивостями матеріалів, з яких виготовляються котли та турбіни. З початку 70-х років ці технічні чинники посилилися новими економічними та організаційними причинами. Зокрема, різко зросли капітальні витрати, темпи зростання попиту на електроенергію сповільнилися, посилилися вимоги щодо захисту навколишнього середовища від шкідливих викидів та подовжилися терміни реалізації проектів будівництва електростанцій. Через війну вартість виробництва електроенергії з вугілля, мала багаторічну тенденцію до зниження, різко зросла. Справді, 1 кВт електроенергії, виробленої новими тепловими електростанціями, коштує тепер більше, ніж у 1920 р. (у порівнянних цінах).

Останні 20 років на вартість теплових електростанцій на вугільному паливі найбільший впливнадавали посилені вимоги до видалення газоподібних,
рідких та твердих відходів. На системи газоочищення та золовидалення сучасних теплових електростанцій тепер припадає 40% капітальних витрат та 35% експлуатаційних витрат. З технічної та економічної точок зору найбільш значним елементом системи контролю викидів є установка для десульфуризації димових газів, часто звана системою мокрого (скрубберного) пиловловлення. Мокрий пиловловлювач (скруббер) затримує оксиди сірки, що є основною забруднювальною речовиною, що утворюється при згорянні вугілля.

Ідея мокрого пиловловлення проста, але на практиці виявляється важко здійсненною і дорогою. Лужна речовиназазвичай вапно або вапняк змішується з водою, і розчин розпорошується в потоці димових газів. Окисли сірки, що містяться в димових газах, абсорбуються частинками лугу і випадають з розчину у вигляді інертного сульфіту або сульфату кальцію (гіпсу). Гіпс можна легко видалити або, якщо він досить чистий, може знайти збут як будівельний матеріал. У складніших і дорогих скруберних системах гіпсовий осад може перетворюватися на сірчану кислоту чи елементарну сірку - цінніші хімічні продукти. З 1978 р. установка скруберів є обов'язковою на всіх теплових електростанціях, що будуються, на пилокутному паливі. Внаслідок цього в енергетичній промисловості США зараз більше скруберних установок, ніж у всьому світі.
Вартість скруберної системи на нових станціях зазвичай складає 150-200 дол. на 1 кВт встановленої потужності. Установка скруберів на станціях, що діють, спочатку спроектованих без мокрого газоочищення, обходиться на 10-40% дорожче, ніж на нових станціях. Експлуатаційні витрати на скрубери досить високі незалежно від того, встановлені вони на старих чи нових станціях. У скруберах утворюється величезна кількість гіпсового шламу, який необхідно витримувати у відстійних ставках або видаляти у відвали, що створює нову екологічну проблему. Наприклад, теплова електростанція потужністю 1000 МВт, що працює на кам'яному куті, що містить 3% сірки, виробляє на рік стільки шламу, що їм можна покрити площу в 1 км2 шаром завтовшки близько 1 м.
Крім того, системи мокрого газоочищення споживають багато води (на станції потужністю 1000 МВт витрата води становить близько 3800 л/хв), а їх обладнання та трубопроводи часто схильні до засмічення та корозії. Ці фактори збільшують експлуатаційні витрати та знижують загальну надійність систем. Нарешті, у скруберних системах витрачається від 3 до 8% вироблюваної станцією енергії на привід насосів і димососів та на підігрів димових газів після газоочищення, що необхідно для запобігання конденсації та корозії в димових трубах.
Широке поширення скруберів в американській енергетиці був ні простим, ні дешевим. Перші скруберні установки були значно менш надійними, ніж решта обладнання станцій, тому компоненти скруберних систем проектувалися з великим запасомміцності та надійності. Деякі з труднощів, пов'язані з установкою та експлуатацією скруберів, можуть бути пояснені тим фактом, що промислове застосування технології скруберного очищення було розпочато передчасно. Тільки тепер, після 25-річного досвіду, надійність скруберних систем досягла прийнятного рівня.
Вартість теплових станцій на вугільному паливі зросла не тільки через обов'язкову наявність систем контролю викидів, а й тому, що вартість будівництва сама по собі різко підскочила вгору. Навіть з урахуванням інфляції питома вартість встановленої потужності теплових станцій на вугільному паливі зараз утричі вища, ніж у 1970 р. За минулі 15 років «ефект масштабу», тобто вигода від будівництва великих електростанцій, був зведений нанівець значним подорожчанням будівництва . Частково це подорожчання відбиває високу вартість фінансування довгострокових об'єктів капітального будівництва.

Який вплив має затримка реалізації проекту, можна побачити з прикладу японських енергетичних компаній. Японські фірми зазвичай більш спритні, ніж їхні американські колеги, у вирішенні організаційно-технічних та фінансових проблем, які часто затримують введення в експлуатацію великих будівельних об'єктів. У Японії електростанція може бути побудована та пущена в дію за 30-40 місяців, тоді як у США для станції такої ж потужності зазвичай потрібно 50-60 місяців. При таких великих термінах реалізації проектів вартість нової станції, що будується (і, отже, вартість замороженого капіталу) виявляється порівнянною з основним капіталом багатьох енергетичних компаній США.

Тому енергетичні компанії шукають шляхи зниження вартості будівництва нових електрогенеруючих установок, зокрема застосовуючи модульні установки меншої потужності, які можна швидко транспортувати та встановлювати на існуючій станції для задоволення зростаючої потреби. Такі установки можуть бути пущені в експлуатацію у більш стислі терміниі тому окупаються швидше, навіть якщо коефіцієнт окупності капіталовкладень залишається незмінним. Установка нових модулів тільки в тих випадках, коли потрібне збільшення потужності системи, може дати чисту економію до 200 дол. на 1 кВт, незважаючи на те, що при застосуванні малопотужних установок втрачаються вигоди від «ефекту масштабу».
В якості альтернативи будівництву нових електрогенеруючих об'єктів енергетичні компанії також практикували реконструкцію старих електростанцій, що діють, для поліпшення їх робочих характеристик і продовження терміну служби. Ця стратегія, природно, потребує менших капітальних витрат, ніж будівництво нових станцій. Така тенденція виправдовує себе і тому, що електростанції, збудовані близько 30 років тому, ще не застаріли морально. У деяких випадках вони працюють навіть з вищим ккд, оскільки не оснащені скруберами. Старі електростанції набувають все більшої питомої ваги в енергетиці країни. У 1970 р. лише 20 електрогенеруючих об'єктів США мали вік понад 30 років. До кінця століття 30 років буде середнім віком теплових електростанцій на вугільному паливі.

Енергетичні компанії також шукають шляхів зниження експлуатаційних витрат на станціях. Для запобігання втратам енергії необхідно забезпечити своєчасне попередження про погіршення робочих характеристик найважливіших ділянок об'єкта. Тому безперервне спостереження станом вузлів і систем стає важливою складовою експлуатаційної служби. Такий безперервний контроль природних процесів зносу, корозії та ерозії дозволяє операторам станції вжити своєчасних заходів та попередити аварійний вихід із ладу енергетичних установок. Значимість таких заходів може бути правильно оцінена, якщо врахувати, наприклад, що вимушений простий станції на вугільному паливі потужністю 1000 МВт може принести енергетичній компанії збитки в 1 млн. дол. на день, головним чином тому, що невироблена енергія має бути компенсована шляхом енергопостачання дорожчих джерел.

Зростання питомих витрат на транспортування та обробку вугілля та на шлаковидалення зробило важливим фактором і якість вугілля (визначається вмістом вологи, сірки та інших мінералів), що визначає робочі характеристики та економіку теплових електростанцій. Хоча низькосортне вугілля може коштувати дешевше від високосортного, його витрати на виробництво тієї ж кількості електричної енергії значно більші. Витрати перевезення більшого обсягу низькосортного вугілля можуть перекрити вигоду, обумовлену його нижчою ціною. Крім того, низькосортне вугілля дає зазвичай більше відходів, ніж високосортне, і, отже, необхідні великі витрати на видалення шлаку. Нарешті, склад низькосортного вугілля схильний до великих коливань, що ускладнює «налаштування» паливної системи станції на роботу з максимально можливим ккд; у цьому випадку система має бути відрегульована так, щоб вона могла працювати на вугіллі найгіршої очікуваної якості.
На діючих електростанціях якість вугілля може бути поліпшена або принаймні стабілізована шляхом видалення перед спалюванням деяких домішок, наприклад мінералів, що містять сірки. У очисних установках подрібнене «брудне» вугілля відокремлюється від домішок багатьма способами, що використовують відмінності у питомій вазі або інших фізичних характеристиках вугілля та домішок.

Незважаючи на зазначені заходи щодо поліпшення робочих характеристик діючих теплових електростанцій на вугільному паливі, у США до кінця століття потрібно буде ввести до ладу додатково 150000 МВт енергетичних потужностей, якщо попит на електроенергію зростатиме з очікуваним темпом 2,3% на рік. Для збереження конкурентоспроможності вугілля на енергетичному ринку, що постійно розширюється, енергетичним компаніям доведеться прийняти на озброєння нові прогресивні способи спалювання вугілля, які є більш ефективними, ніж традиційні, у трьох ключових аспектах: менше забруднення навколишнього середовища, скорочення термінів будівництва електростанцій і поліпшення їх робочих та експлуатаційних характеристик .

СПАЛЮВАННЯ ВУГІЛЛЯ У ПСЕВДОЖИРЕНОМУ ШАРУ зменшує потребу у допоміжних установках з очищення викидів електростанції.
Псевдозріджений шар суміші вугілля і вапняку створюється в топці котла повітряним потоком, в якому тверді частинки перемішуються і знаходяться у зваженому стані, тобто поводяться так само, як у киплячій рідині.
Турбулентне перемішування забезпечує повноту згоряння вугілля; при цьому частинки вапняку реагують з окислами сірки та уловлюють близько 90% цих оксидів. Оскільки нагрівальні груби котла безпосередньо стосуються киплячого шару палива, генерація пари відбувається з більшою ефективністю, ніж у звичайних парових котлах, що працюють на подрібненому куті.
Крім того, температура вугілля, що горить, в киплячому шарі нижче, що запобігає плавленню котельного шлаку і зменшує утворення оксидів азоту.
ГАЗИФІКАЦІЯ ВУГІЛЛЯ може бути здійснена нагріванням суміші вугілля та води в атмосфері кисню. Продуктом процесу є газ, що складається в основному з окису вуглецю та водню. Після того, як газ буде охолоджений, очищений від твердих частинок і звільнений від сірки, його можна використовувати як паливо для газових турбін, а потім для водяної пари для парової турбіни (комбінований цикл).
Станція з комбінованим циклом викидає в атмосферу менше забруднюючих речовин ніж звичайна теплова станція на вугіллі.

В даний час розробляється більше десятка способів спалювання вугілля з підвищеним ккд та меншою шкодою для навколишнього середовища. Найбільш перспективними серед них є спалювання в псевдозрідженому шарі та газифікація вугілля. Спалювання по першому способу проводиться в топці парового котла, яка влаштована так, що подрібнене вугілля в суміші з частинками вапняку підтримується над решіткою топки у зваженому (псевдо-зрідженому) стані потужним висхідним потоком повітря. Зважені частки поводяться по суті так само, як і в киплячій рідині, тобто знаходяться в турбулентному русі, що забезпечує високу ефективність процесу горіння. Водяні труби такого котла знаходяться в безпосередньому контакті з «киплячим шаром» палива, що впало, в результаті чого велика частка тепла передається теплопровідністю, що значно більш ефективно, ніж радіаційне і конвективне перенесення тепла в звичайному паровому котлі.

Котел з топкою, де вугілля спалюється в псевдозрідженому шарі, має більшу площу теплопередаючих поверхонь труб, ніж звичайний котел, що працює на подрібненому в пил вугіллі, що дозволяє знизити температуру в топці і тим самим зменшити утворення оксидів азоту. (Якщо температура у звичайному котлі може бути вище 1650 °С, то в котлі зі спалюванням у псевдозрідженому шарі вона знаходиться в межах 780-870 °С.) Більш того, вапняк, примішаний до вугілля, пов'язує 90 або більше відсотків сірки, що звільнилася з вугілля при горінні, оскільки нижча робоча температура сприяє проходженню реакції між сіркою та вапняком з утворенням сульфіту або сульфату кальцію. Таким чином, шкідливі для навколишнього середовища речовини, що утворюються при спалюванні вугілля, нейтралізуються на місці утворення, тобто в топці.
Крім того, котел зі спалюванням у псевдозрідженому шарі за своїм пристроєм та принципом роботи менш чутливий до коливань якості вугілля. У топці звичайного котла, що працює на пилоподібному вугіллі, утворюється величезна кількість розплавленого шлаку, який часто забиває теплопередаючі поверхні і тим самим знижує ккд і надійність котла. У казані зі спалюванням у псевдозрідженому шарі вугілля згоряє при температурі нижче точки плавлення шлаку і тому проблема засмічення поверхонь нагрівання шлаком навіть не виникає. Такі котли можуть працювати на вугіллі нижчої якості, що в деяких випадках дозволяє суттєво знизити експлуатаційні витрати.
Спосіб спалювання в псевдозрідженому шарі легко реалізується в казанах модульної конструкції з невеликою паропродуктивністю. За деякими оцінками капіталовкладення на теплову електростанцію з компактними котлами, що працюють за принципом псевдозрідженого шару, можуть бути на 10-20% нижче капіталовкладень на теплову станцію традиційного типу такої ж потужності. Економія досягається за рахунок скорочення часу будівництва. Крім того, потужність такої станції можна легко наростити при збільшенні електричного навантаження, що важливо для тих випадків, коли її зростання в майбутньому наперед невідоме. Спрощується і проблема планування, оскільки такі компактні установки можна швидко змонтувати, щойно виникне необхідність збільшення вироблення електроенергії.
Котли зі спалюванням в псевдозрідженому шарі можуть також включатися в схему існуючих електростанцій, коли необхідно швидко збільшити потужність, що генерується. Наприклад, енергетична компанія Northern States Power переробила один із пиловугільних котлів на станції в шт. Міннесота в котел із псевдозрідженим шаром. Переробка здійснювалася з метою збільшення потужності електростанції на 40%, зниження вимог до якості палива (котел може працювати навіть на місцевих відходах), ретельнішого очищення викидів та подовження терміну служби станції до 40 років.
За минулі 15 років масштаби застосування технології, що використовується на теплових електростанціях, оснащених виключно котлами зі спалюванням у псевдозрідженому шарі, розширилися від дрібних експериментальних та напівпромислових установок до великих «демонстраційних» станцій. Така станція із загальною потужністю 160 МВт будується спільно компаніями Tennessee Valley Authority, Duke Power та Commonwealth of Kentucky; Компанія Colorado-Ute Electric Association, Inc. пустила в експлуатацію електрогенеруючу установку потужністю 110 МВт з котлами зі спалюванням у псевдозрідженому шарі. У разі успіху цих двох проектів, а також проекту компанії Northern States Power, спільного підприємства приватного сектора із загальним капіталом близько 400 млн. дол., економічний ризик, пов'язаний із застосуванням котлів зі спалюванням у псевдозрідженому шарі в енергетичній промисловості, буде значно зменшений.
Іншим способом, який, щоправда, вже існував у більш простому виглядіще в середині XIX ст. є газифікація кам'яного вугілля з отриманням «чисто палаючого» газу. Такий газ придатний для освітлення та опалення і широко використовувався в США до Другої світової війни, доки не був витіснений природним газом.
Спочатку газифікація вугілля привернула увагу енергетичних компаній, які сподівалися за допомогою цього способу отримати паливо, що згоряє без відходів, і за рахунок цього позбутися скруберного очищення. Тепер стало очевидно, що газифікація вугілля має важливішу перевагу: гарячі продукти згоряння генераторного газу можна безпосередньо використовувати для приводу газових турбін. У свою чергу, відпрацьоване тепло продуктів згоряння після газової турбіни може бути утилізовано з метою отримання пари для приводу парової турбіни. Таке спільне використання газових та парових турбін, зване комбінованим циклом, є нині одним із самих ефективних способіввиробництва електричної енергії
Газ, отриманий газифікацією кам'яного вугілля та звільнений від сірки та твердих частинок, є чудовим паливом для газових турбін і, як і природний газ, згоряє майже без відходів. Високий ККД комбінованого циклу компенсує неминучі втрати, пов'язані з перетворенням вугілля на газ. Більше того, станція з комбінованим циклом споживає значно менше води, тому що дві третини потужності розвиває газова турбіна, яка не потребує води на відміну від парової турбіни.
Життєздатність електричних станцій з комбінованим циклом, що працюють на принципі газифікації вугілля, була доведена досвідом експлуатації станції Cool Water фірми Southern California Edison. Ця станція потужністю близько 100 МВт була введена в експлуатацію у травні 1984 р. Вона може працювати на різних сортах вугілля. Викиди станції по чистоті не відрізняються від викидів сусідньої станції, що працює на природному газі. Зміст оксидів сірки в газах, що йдуть підтримується на рівні значно нижче встановленої норми за допомогою допоміжної системи уловлювання сірки, яка видаляє майже всю сірку, що міститься в вихідному паливі, і виробляє чисту сірку, що використовується в промислових цілях. Утворення оксидів азоту запобігається додаванню до газу води перед спалюванням, що знижує температуру горіння газу. Більш того, залишок в газогенераторі залишок вугілля, що згорів, піддається переплавці і перетворюється в інертний склоподібний матеріал, який після охолодження відповідає вимогам, що пред'являються в штаті Каліфорнія до твердих відходів.
Крім більш високого ккд та меншого забруднення навколишнього середовища станції з комбінованим циклом мають ще одну перевагу: вони можуть споруджуватися в декілька черг, тому встановлена ​​потужність нарощується блоками. Така гнучкість будівництва зменшує ризик надмірних чи, навпаки, недостатніх капіталовкладень, пов'язані з невизначеністю зростання попиту електроенергію. Наприклад, перша черга встановленої потужності може працювати на газових турбінах, а як паливо використовувати не вугілля, а нафту або природний газ, якщо поточні ціни на ці продукти низькі. Потім, у міру зростання попиту на електроенергію, додатково вводяться до ладу котел-утилізатор і парова турбіна, що збільшить не тільки потужність, а й ккд станції. Згодом, коли попит на електроенергію знову збільшиться, на станції можна буде збудувати установку для газифікації вугілля.
Роль теплових електростанцій на вугільному паливі є ключовою темою, коли йдеться про збереження природних ресурсів, захист навколишнього середовища та шляхи розвитку економіки. Ці аспекти цієї проблеми не обов'язково є конфліктуючими. Досвід застосування нових технологічних процесів спалювання вугілля показує, що вони можуть успішно та одночасно вирішувати проблеми та охорони навколишнього середовища, та зниження вартості електроенергії. Цей принцип було враховано у спільній американо-канадській доповіді про кислотні дощі, опублікованій минулого року. Керуючись пропозиціями, що містяться в доповіді, конгрес США в даний час розглядає можливість заснування генеральної національної ініціативи з демонстрації та застосування «чистих» процесів спалювання вугілля. Ця ініціатива, яка об'єднає приватний капітал з федеральними капіталовкладеннями, націлена на широке промислове застосування у 90-ті роки нових процесів спалювання вугілля, включаючи котли зі спалюванням палива у киплячому шарі та газогенератори. Однак навіть при широкому застосуванні нових процесів спалювання вугілля в найближчому майбутньому попит на електроенергію, що росте, не зможе бути задоволений без цілого комплексу узгоджених заходів з консервації електроенергії, регулювання її споживання і підвищення продуктивності існуючих теплових електростанцій, що працюють на традиційних принципах. Економічні та екологічні проблеми, що постійно стоять на порядку денному, ймовірно, приведуть до появи абсолютно нових технологічних розробок, які принципово відрізняються від тих, що були тут описані. У перспективі теплові електростанції на вугільному паливі можуть перетворитися на комплексні підприємства з переробки природних ресурсів. Такі підприємства перероблятимуть місцеві види палива та інші природні ресурсита виробляти електроенергію, тепло та різні продукти з урахуванням потреб місцевої економіки. Крім котлів зі спалюванням у киплячому шарі та установок для газифікації вугілля такі підприємства будуть оснащені електронними системамитехнічної діагностики та автоматизованими системами управління та, крім того, корисно використовувати більшість побічних продуктів спалювання вугілля.

Таким чином, можливості покращення економічних та екологічних факторів виробництва електроенергії на базі кам'яного вугілля дуже широкі. Своєчасне використання цих можливостей залежить, однак, від того, чи зможе уряд проводити збалансовану політику щодо виробництва енергії та захисту навколишнього середовища, яка б створила необхідні стимули для електроенергетичної промисловості. Необхідно вжити заходів до того, щоб нові процеси спалювання вугілля розвивалися та впроваджувалися раціонально, при співпраці з енергетичними компаніями, а не так, як це було з впровадженням скруберного газоочищення. Все це можна забезпечити, якщо звести до мінімуму витрати та ризик шляхом добре продуманого проектування, випробування та вдосконалення невеликих досвідчених експериментальних установок з подальшим широким промисловим впровадженням систем, що розробляються.

Реферат з дисципліни «Вступ до напряму»

Виконав студент Михайлов Д.А.

Новосибірський державний технічний університет

Новосибірськ, 2008

Вступ

Електрична станція – енергетична установка, що служить перетворення природної енергії на електричну. Тип електричної станції визначається насамперед видом природної енергії. Найбільшого поширення набули теплові електричні станції (ТЕС), у яких використовується теплова енергія, що виділяється при спалюванні органічного палива (вугілля, нафту, газ та інших.). На теплових електростанціях виробляється близько 76% електроенергії, виробленої планети. Це пов'язано з наявністю органічного палива майже в усіх районах нашої планети; можливістю транспорту органічного палива з місця видобутку на електростанцію, що розміщується біля споживачів енергії; технічним прогресом на теплових електростанціях, які забезпечують спорудження ТЕС великою потужністю; можливістю використання відпрацьованого тепла робочого тіла та відпустки споживачам, крім електричної, також теплової енергії (з парою або гарячою водою) тощо. Теплові електричні станції, призначені лише виробництва електроенергії, називають конденсаційними електричними станціями (КЭС). Електростанції, призначені для комбінованого вироблення електричної енергії та відпуску пари, а також гарячої води тепловому споживачеві мають парові турбіни з проміжними відборами пари або з протитиском. На таких установках теплота пари, що відпрацювала, частково або навіть повністю використовується для теплопостачання, внаслідок чого втрати теплоти з охолоджувальною водою скорочуються. Однак частка енергії пари, перетворена в електричну, при тих самих початкових параметрах на установках з теплофікаційними турбінами нижче, ніж на установках з конденсаційними турбінами. Теплоелектростанції, на яких пар, що відпрацював, поряд з виробленням електроенергії використовується для теплопостачання, називають теплоелектроцентралями (ТЕЦ).

Основні засади роботи ТЕС

На рис.1 представлена ​​типова теплова схемаконденсаційної установки на органічному паливі

Рис.1 Принципова теплова схема ТЕС

1 – паровий котел; 2 – турбіна; 3 – електрогенератор; 4 – конденсатор; 5 – конденсатний насос; 6 – підігрівачі низького тиску; 7 – деаератор; 8 – поживний насос; 9 – підігрівачі високого тиску; 10 – дренажний насос.

Цю схему називають схемою із проміжним перегрівом пари. Як відомо з курсу термодинаміки, теплова економічність такої схеми при тих самих початкових і кінцевих параметрах і правильному виборі параметрів проміжного перегріву вище, ніж у схемі без проміжного перегріву.

Розглянемо принципи роботи ТЕС. Паливо та окислювач, яким зазвичай служить підігріте повітря, безперервно надходять у топку котла (1). Як паливо використовується вугілля, торф, газ, горючі сланці чи мазут. Більшість ТЕС нашої країни використовують як паливо вугільний пил. За рахунок тепла, що утворюється в результаті спалювання палива, вода в паровому котлі нагрівається, випаровується, а насичена пара, що утворилася, надходить по паропроводу в парову турбіну (2). Призначення якої перетворювати теплову енергію пари в механічну енергію.

Всі частини турбіни, що рухаються, жорстко пов'язані з валом і обертаються разом з ним. У турбіні кінетична енергія струменів пари передається ротору в такий спосіб. Пар високого тиску та температури, що має велику внутрішню енергію, з котла надходить у сопла (канали) турбіни. Струменя пари з високою швидкістю, частіше вище звукової, безперервно витікає з сопел і надходить на робочі лопатки турбіни, укріплені на диску, жорстко пов'язаному з валом. При цьому механічна енергія потоку пари перетворюється на механічну енергію ротора турбіни, а точніше кажучи, на механічну енергію ротора турбогенератора, так як вали турбіни та електричного генератора (3) з'єднані між собою. В електричному генераторі механічна енергія перетворюється на електричну енергію.

Після парової турбіни водяна пара, маючи вже низький тиск і температуру, надходить у конденсатор (4). Тут пара за допомогою охолоджувальної води, що прокачується по розташованих усередині конденсатора трубках, перетворюється на воду, яка конденсатним насосом (5) через регенеративні підігрівачі (6) подається в деаератор (7).

Деаератор служить видалення з води розчинених у ній газів; одночасно в ньому, так само як у регенеративних підігрівачах, поживна вода підігрівається парою, що відбирається для цього з відбору турбіни. Деаерація проводиться для того, щоб довести до допустимих значень вміст кисню та вуглекислого газу в ній і тим самим знизити швидкість корозії у трактах води та пари.

Деаерована вода живильним насосом (8) через підігрівачі (9) подається в котельню. Конденсат гріючої пари, що утворюється в підігрівачах (9), каскадно перепускається в деаератор, а конденсат гріючої пари підігрівачів (6) подається дренажним насосом (10) в лінію, по якій протікає конденсат з конденсатора (4).

Найбільш складною в технічному планіє організація роботи ТЕС на вугіллі. Водночас частка таких електростанцій у вітчизняній енергетиці висока (~30%) та планується її збільшення.

Технологічна схема такої електростанції, що працює на вугіллі, показано на рис.2.

Рис.2 Технологічна схема пиловугільної ТЕС

1 – залізничні вагони; 2 – розвантажувальні пристрої; 3 – склад; 4 – стрічкові транспортери; 5 – дробильна установка; 6 – бункера сирого вугілля; 7 – пиловугільні млини; 8 – сепаратор; 9 – циклон; 10 – бункер вугільного пилу; 11 – живильники; 12 - млиновий вентилятор; 13 - топкова камера котла; 14 – дутьовий вентилятор; 15 - золоуловлювачі; 16 - димососи; 17 – димова труба; 18 – підігрівачі низького тиску; 19 – підігрівачі високого тиску; 20 - деаератор; 21 – поживні насоси; 22 - турбіна; 23 – конденсатор турбіни; 24 – конденсатний насос; 25 – циркуляційні насоси; 26 - приймальний колодязь; 27 - скидний колодязь; 28 – хімічний цех; 29 - мережеві підігрівачі; 30 - трубопроводу; 31 – лінія відведення конденсату; 32 - електричний розподільний пристрій; 33 – багерні насоси.

Паливо в залізничних вагонах (1) надходить до розвантажувальних пристроїв (2), звідки за допомогою стрічкових транспортерів (4) прямує на склад (3), зі складу паливо подається в дробильну установку (5). Є можливість подавати паливо в дробильну установку та безпосередньо від розвантажувальних пристроїв. З дробильної установки паливо надходить до бункера сирого вугілля (6), а звідти через живильники – до пилокутних млинів (7). Вугільний пил пневматично транспортується через сепаратор (8) і циклон (9) в бункер вугільного пилу (10), а звідти живильниками (11) до пальників. Повітря з циклону засмоктується вентилятором млина (12) і подається в топкову камеру котла (13).

Гази, що утворюються при горінні в камері топки, після виходу з неї проходять послідовно газоходи котельної установки, де в пароперегрівачі (первинному і вторинному, якщо здійснюється цикл з проміжним перегрівом пари) і водяному економайзері віддають теплоту робочому тілу, а в повітропідігрівачі - подається в паровий котел повітря. Потім у золоуловлювачах (15) гази очищаються від летючої золи і через димову трубу (17) димососами (16) викидаються в атмосферу.

Шлак і зола, що випадають під камерою топки, повітропідігрівачем і золоуловітелями, змиваються водою і по каналах надходять до багерних насосів (33), які перекачують їх на золовідвали.

Повітря, необхідне для горіння, подається в повітропідігрівачі парового котла дуттьовим вентилятором (14). Забирається повітря зазвичай з верхньої частини котельні та (при парових котлах великої продуктивності) зовні котельного відділення.

Перегріта пара від парового котла (13) надходить до турбіни (22).

Конденсат з конденсатора турбіни (23) подається конденсатними насосами (24) через регенеративні підігрівачі низького тиску (18) деаератор (20), а звідти поживними насосами (21) через підігрівачі високого тиску (19) в економайзер котла.

Втрати пари та конденсату заповнюються в даній схемі хімічно знесоленою водою, яка подається в лінію конденсату за конденсатором турбіни.

Охолодна вода подається в конденсатор із приймального колодязя (26) водопостачання циркуляційними насосами (25). Підігріта вода скидається в скидний колодязь (27) того ж джерела на деякій відстані від місця забору, достатньому для того, щоб підігріта вода не підмішувалася до забирається. Пристрої хімічної обробки додаткової води перебувають у хімічному цеху (28).

У схемах може бути передбачена невелика підігрівальна мережна установка для теплофікації електростанції та прилеглого селища. До мережевих підігрівачів (29) цієї установки пара надходить від відборів турбіни, конденсат відводиться по лінії (31). Мережева вода підводиться до підігрівача і відводиться від нього трубопроводами (30).

Вироблена електрична енергія відводиться від електричного генератора до зовнішніх споживачів через електричні трансформатори, що підвищують.

Для постачання електроенергією електродвигунів, освітлювальних пристроїв та приладів електростанції є електричний розподільний пристрій потреб (32).

Висновок

У рефераті подано основні засади роботи ТЕС. Розглянуто теплову схему електростанції на прикладі роботи конденсаційної електричної станції, а також технологічну схему на прикладі електростанції працюючої на вугіллі. Показано технологічні принципи виробництва електричної енергії та теплоти.

На теплових електростанціях люди одержують практично всю необхідну енергію на планеті. Люди навчилися отримувати електричний струмінакше, але все ще не приймають альтернативних варіантів. Нехай їм невигідно використати паливо, вони не відмовляються від нього.

У чому секрет теплових електростанцій?

Теплові електростанціїневипадково залишаються незамінними. Їхня турбіна виробляє енергію найпростішим способом, використовуючи горіння. За рахунок цього вдається мінімізувати витрати на будівництво, які вважаються цілком виправданими. У всіх країнах світу є такі об'єкти, тому можна не дивуватися поширенню.

Принцип роботи теплових електростанційпобудований на спалюванні величезних обсягів палива. Внаслідок цього з'являється електроенергія, яка спочатку акумулюється, а потім поширюється певними регіонами. Схеми теплових електростанцій майже залишаються незмінними.

Яке паливо використовується на станції?

Кожна станція використовує окреме паливо. Він спеціально поставляється, щоб не порушувався робочий процес. Цей момент залишається одним із проблематичних, оскільки з'являються транспортні витрати. Які види використовує обладнання?

  • Вугілля;
  • Горючі сланці;
  • Торф;
  • Мазут;
  • Природний газ.

Теплові схеми теплових електростанцій будуються певному вигляді палива. Причому до них вносяться незначні зміни, що забезпечують максимальний коефіцієнт корисної дії. Якщо їх не зробити, основна витрата буде надмірною, тому не виправдає отриманий електричний струм.

Типи теплових електростанцій

Типи теплових електростанцій важливе питання. Відповідь на нього розповість, як з'являється необхідна енергія. Сьогодні поступово вносяться серйозні зміни, де головним джерелом виявляться альтернативні види, але поки що їх застосування залишається недоцільним.

  1. Конденсаційні (КЕС);
  2. Теплоелектроцентралі (ТЕЦ);
  3. Державні районні електростанції (ДРЕС).

Електростанція ТЕС вимагатиме докладного опису. Види різні, тому лише розгляд пояснить, чому здійснюється будівництво такого масштабу.

Конденсаційні (КЕС)

Види теплових електростанцій починаються з конденсаційних. Такі ТЕЦ застосовуються виключно для вироблення електроенергії. Найчастіше вона акумулюється, відразу не поширюючись. Конденсаційний метод забезпечує максимальний ККД, тому такі принципи вважаються оптимальними. Сьогодні у всіх країнах виділяють окремі об'єкти великого масштабу, які забезпечують великі регіони.

Поступово з'являються атомні установки, які замінюють традиційне паливо. Тільки заміна залишається дорогим і тривалим процесом, оскільки робота на органічному паливі відрізняється від інших способів. Причому відключення жодної станції неможливе, адже у таких ситуаціях цілі області залишаються без цінної електроенергії.

Теплоелектроцентралі (ТЕЦ)

ТЕЦ використовуються відразу для кількох цілей. Насамперед вони використовуються для отримання цінної електроенергії, але спалювання палива також залишається корисним для вироблення тепла. За рахунок цього теплофікаційні електростанції продовжують застосовуватись на практиці.


Важливою особливістю є те, що такі теплові електростанції види інші перевершують відносно невелику потужність. Вони забезпечують окремі райони, тому немає потреби в об'ємних постачаннях. Практика показує, наскільки вигідне таке рішення через прокладання додаткових ліній електропередач. Принцип роботи сучасної ТЕС є непотрібним лише через екологію.

Державні районні електростанції

Загальні відомостіпро сучасні теплові електростанціїне відзначають ДРЕС. Поступово вони залишаються на задньому плані, втрачаючи актуальність. Хоча державні районні електростанції залишаються корисними з погляду обсягів виробітку енергії.

Різні видитеплових електростанцій дають підтримку великим регіонам, але їх потужність недостатня. За часів СРСР здійснювалися великомасштабні проекти, які зараз закриваються. Причиною стало недоцільне використання палива. Хоча їхня заміна залишається проблематичною, оскільки переваги та недоліки сучасних ТЕС насамперед відзначають великі обсяги енергії.

Які електростанції є тепловими?Їхній принцип побудований на спалюванні палива. Вони залишаються незамінними, хоча активно ведуться підрахунки щодо рівнозначної заміни. Теплові електростанції переваги та недоліки продовжують підтверджувати на практиці. Через що їхня робота залишається необхідною.

У цієї парової турбіни добре видно лопатки робочих коліс.

Теплова електростанція (ТЕЦ) використовує енергію, що вивільняється при спалюванні органічного палива - вугілля, нафти та природного газу - для перетворення води на пару високого тиску. Ця пара, що має тиск близько 240 кілограмів на квадратний сантиметр і температуру 524°С (1000°F), обертає турбіну. Турбіна обертає гігантський магніт усередині генератора, що виробляє електроенергію.

Сучасні теплові електростанції перетворюють на електроенергію близько 40 відсотків теплоти, що виділилася при згорянні палива, решта скидається в навколишнє середовище. У Європі багато теплових електростанцій використовують відпрацьовану теплоту для опалення прилеглих будинків та підприємств. Комбінована вироблення тепла та електроенергії збільшує енергетичну віддачу електростанції до 80 відсотків.

Паротурбінне встановлення з електрогенератором

Типова парова турбіна містить дві групи лопаток. Пар високого тиску, що надходить безпосередньо з котла, входить у проточну частину турбіни та обертає робочі колеса з першою групою лопаток. Потім пара підігрівається в пароперегрівачі і знову надходить у проточну частину турбіни, щоб обертати робочі колеса з другою групою лопаток, які працюють при нижчому тиску пари.

Вид у розрізі

Типовий генератор теплової електростанції (ТЕЦ) приводиться у обертання безпосередньо паровою турбіною, яка здійснює 3000 обертів на хвилину. У генераторах такого типу магніт, який також називають ротором, обертається, а обмотки (статор) нерухомі. Система охолодження запобігає перегріву генератора.

Вироблення енергії за допомогою пари

На тепловій електростанції паливо згоряє у казані, з утворенням високотемпературного полум'я. Вода проходить трубками через полум'я, нагрівається і перетворюється на пару високого тиску. Пар обертає турбіну, виробляючи механічну енергію, яку генератор перетворює на електрику. Вийшовши з турбіни, пара надходить у конденсатор, де омиває трубки з холодною проточною водою, і в результаті знову перетворюється на рідину.

Мазутний, вугільний чи газовий котел

Усередині казана

Котел заповнений химерно вигнутими трубками, по яких проходить вода, що нагрівається. Складна конфігурація трубок дозволяє суттєво збільшити кількість переданої воді теплоти та за рахунок цього виробляти набагато більше пари.

Поділіться з друзями або збережіть для себе:

Завантаження...