Оператори нуль логарифм корінь. Логарифм правила дії з логарифмами. Як перетворити логарифмічний вираз зі змінними


Продовжуємо вивчати логарифми. У цій статті ми поговоримо про обчислення логарифмів, цей процес називають логарифмуванням. Спочатку ми розберемося з обчисленням логарифмів за визначенням. Далі розглянемо, як знаходять значення логарифмів з їх властивостей. Після цього зупинимося на обчисленні логарифмів через задані значення інших логарифмів. Нарешті, навчимося використовувати таблиці логарифмів. Вся теорія має приклади з докладними рішеннями.

Навігація на сторінці.

Обчислення логарифмів за визначенням

У найпростіших випадках можна досить швидко і легко виконати знаходження логарифму за визначенням. Давайте докладно розглянемо, як відбувається цей процес.

Його суть полягає в поданні числа b у вигляді a c , звідки визначення логарифму число c є значенням логарифму. Тобто, знаходження логарифму за визначенням відповідає наступний ланцюжок рівностей: log a b = log a a c = c.

Отже, обчислення логарифму за визначенням зводиться до знаходження такого числа c , що a c = b , а саме c є значення логарифму.

Враховуючи інформацію попередніх абзаців, коли число під знаком логарифму задано деяким ступенем заснування логарифму, то можна відразу вказати, чому дорівнює логарифм – він дорівнює показнику ступеня. Покажемо рішення прикладів.

приклад.

Знайдіть log 2 2 −3, а також обчисліть натуральний логарифм числа e 5,3.

Рішення.

Визначення логарифму дозволяє нам відразу сказати, що log 2 2 −3 =−3 . Дійсно, число під знаком логарифму дорівнює підставі 2 -3 ступеня.

Аналогічно знаходимо другий логарифм: lne 5,3 = 5,3.

Відповідь:

log 2 2 −3 =−3 та lne 5,3 =5,3 .

Якщо ж число b під знаком логарифму не задано як ступінь основи логарифму, потрібно уважно подивитися, чи можна дійти уявлення числа b як a c . Часто таке уявлення буває досить очевидним, особливо коли число під знаком логарифму дорівнює підставі в ступені 1, або 2, або 3, ...

приклад.

Обчисліть логарифми log 5 25 і .

Рішення.

Нескладно помітити, що 25 = 5 2 це дозволяє обчислювати перший логарифм: log 5 25 = log 5 5 2 = 2 .

Переходимо до обчислення другого логарифму. Число можна представити у вигляді ступеня числа 7: (за потреби дивіться ). Отже, .

Перепишемо третій логарифм у такому вигляді. Тепер можна побачити, що , звідки укладаємо, що . Отже, за визначенням логарифму .

Коротко рішення можна було записати так: .

Відповідь:

log 5 25 = 2, і .

Коли під знаком логарифму знаходиться досить велике натуральне число, його не завадить розкласти на прості множники. Це часто допомагає уявити таке число у вигляді певної міри підстави логарифму, отже, обчислити цей логарифм за визначенням.

приклад.

Знайдіть значення логарифму.

Рішення.

Деякі властивості логарифмів дозволяють одразу вказати значення логарифмів. До таких властивостей відносяться властивість логарифму одиниці та властивість логарифму числа, що дорівнює основі: log 1 1 = log a a 0 = 0 і log a a = log a a 1 = 1 . Тобто коли під знаком логарифму знаходиться число 1 або число a , рівне підставі логарифму, то в цих випадках логарифми рівні 0 і 1 відповідно.

приклад.

Чому рівні логарифми та lg10?

Рішення.

Оскільки , то з визначення логарифму випливає .

У другому прикладі число 10 під знаком логарифму збігається з його основою, тому десятковий логарифм десяти дорівнює одиниці, тобто lg10=lg10 1 =1 .

Відповідь:

І lg10=1.

Зазначимо, що обчислення логарифмів за визначенням (яке ми розібрали в попередньому пункті) має на увазі використання рівності log a a p =p, яка є однією з властивостей логарифмів.

На практиці, коли число під знаком логарифму та основа логарифму легко видаються у вигляді ступеня деякого числа, дуже зручно використовувати формулу , Що відповідає одному з властивостей логарифмів. Розглянемо приклад знаходження логарифму, що ілюструє використання цієї формули.

приклад.

Обчисліть логарифм.

Рішення.

Відповідь:

.

Не згадані вище властивості логарифмів також використовуються для обчислення, але про це поговоримо в наступних пунктах.

Знаходження логарифмів через інші відомі логарифми

Інформація цього пункту продовжує тему використання властивостей логарифмів під час їх обчислення. Але тут основна відмінність полягає в тому, що властивості логарифмів використовуються для того, щоб виразити вихідний логарифм через інший логарифм, значення якого відомо. Наведемо приклад пояснення. Припустимо, ми знаємо, що log 2 3≈1,584963 тоді ми можемо знайти, наприклад, log 2 6 , виконавши невелике перетворення за допомогою властивостей логарифму: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

У наведеному прикладі нам було достатньо використати властивість логарифму твору. Однак набагато частіше доводиться застосовувати ширший арсенал властивостей логарифмів, щоб обчислити вихідний логарифм через задані.

приклад.

Обчисліть логарифм 27 на підставі 60 якщо відомо, що log 60 2=a і log 60 5=b .

Рішення.

Отже, нам потрібно знайти log 60 27 . Нескладно помітити, що 27=3 3 і вихідний логарифм в силу властивості логарифму ступеня можна переписати як 3 log 60 3 .

Тепер подивимося, як log 60 3 виразити через відомі логарифми. Властивість логарифму числа, що дорівнює основі, дозволяє записати рівність log 60 60 = 1 . З іншого боку log 60 60 = log60 (2 2 · 3 · 5) = log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким чином, 2·log 60 2+log 60 3+log 60 5=1. Отже, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Нарешті, обчислюємо вихідний логарифм: log 60 27 = 3 · log 60 3 = 3·(1−2·a−b)=3−6·a−3·b.

Відповідь:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Окремо варто сказати про значення формули переходу до нової основи логарифму виду . Вона дозволяє від логарифмів з будь-якими основами переходити до логарифмів з конкретною основою, значення яких відомі або є можливість їх відшукати. Зазвичай від вихідного логарифму за формулою переходу переходять до логарифм по одній з підстав 2 , e або 10 , так як з цих підстав існують таблиці логарифмів, що дозволяють з певним ступенем точності обчислювати їх значення. У цьому пункті ми покажемо, як це робиться.

Таблиці логарифмів, їх використання

Для наближеного обчислення значень логарифмів можна використовувати таблиці логарифмів. Найчастіше використовується таблиця логарифмів на підставі 2 таблиця натуральних логарифмів і таблиця десяткових логарифмів. При роботі в десятковій системі числення зручно користуватися таблицею логарифмів на підставі десять. З її допомогою і вчитимемося знаходити значення логарифмів.










Подана таблиця дозволяє з точністю до однієї десятитисячної знаходити значення десяткових логарифмів чисел від 1000 до 9999 (з трьома знаками після коми). Принцип знаходження значення логарифму за допомогою таблиці десяткових логарифмів розберемо на конкретному прикладі так зрозуміло. Знайдемо lg1,256.

У лівому стовпці таблиці десяткових логарифмів знаходимо дві перші цифри числа 1,256, тобто, знаходимо 1,2 (це для наочності обведено синьою лінією). Третю цифру числа 1,256 (цифру 5) знаходимо в першому або останньому рядку зліва від подвійної лінії (це число обведене червоною лінією). Четверту цифру вихідного числа 1,256 (цифру 6) знаходимо в першому або останньому рядку праворуч від подвійної лінії (це число обведене зеленою лінією). Тепер знаходимо числа в осередках таблиці логарифмів на перетині зазначеного рядка та зазначених стовпців (ці числа виділені оранжевим кольором). Сума зазначених чисел дає значення десяткового логарифму з точністю до четвертого знака після коми, тобто, lg1,236≈0,0969+0,0021=0,0990.

А чи можна, використовуючи наведену таблицю, знаходити значення десяткових логарифмів чисел, що мають більше трьох цифр після коми, а також за межі від 1 до 9,999? Так можна. Покажемо, як це робиться на прикладі.

Обчислимо lg102,76332. Спочатку потрібно записати число у стандартному вигляді: 102,76332 = 1,0276332 · 10 2 . Після цього мантису слід округлити до третього знака після коми, маємо 1,0276332·10 2 ≈1,028·10 2, при цьому вихідний десятковий логарифм приблизно дорівнює логарифму отриманого числа, тобто, приймаємо lg102,76332≈lg1,028·10 2 . Тепер застосовуємо властивості логарифму: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Нарешті, знаходимо значення логарифму lg1,028 по таблиці десяткових логарифмів lg1,028 0,0086 +0,0034 = 0,012 . У результаті весь процес обчислення логарифму виглядає так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012.

Насамкінець варто відзначити, що використовуючи таблицю десяткових логарифмів можна обчислити наближене значення будь-якого логарифму. Для цього достатньо за допомогою формули переходу перейти до десяткових логарифмів, знайти їх значення по таблиці, і виконати обчислення, що залишилися.

Наприклад обчислимо log 2 3 . За формулою переходу до нової основи логарифму маємо. З таблиці десяткових логарифмів знаходимо lg3 ≈ 0,4771 та lg2 ≈ 0,3010 . Таким чином, .

Список літератури.

  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

    Почнемо зі властивості логарифму одиниці. Його формулювання таке: логарифм одиниці дорівнює нулю, тобто, log a 1=0для будь-якого a>0, a≠1. Доказ не викликає складнощів: оскільки a 0 =1 для будь-якого a , що задовольняє зазначеним вище умовам a>0 і a≠1 , то рівність log a 1=0 відразу випливає з визначення логарифму.

    Наведемо приклади застосування розглянутої якості: log 3 1=0 , lg1=0 і .

    Переходимо до наступної властивості: логарифм числа, рівного підставі, дорівнює одиниці, тобто, log a a=1при a>0, a≠1. Справді, оскільки a 1 =a для будь-якого a , то визначення логарифму log a a=1 .

    Прикладами використання цієї властивості логарифмів є рівності log 5 5 = 1, log 5,6 5,6 і lne = 1 .

    Наприклад, log 2 2 7 =7 , lg10 -4 =-4 і .

    Логарифм твору двох позитивних чисел x і y дорівнює добутку логарифмів цих чисел: log a (x · y) = log a x + log a y, a>0, a≠1. Доведемо властивість логарифму твору. В силу властивостей ступеня a log a x + log a y = log a x · log a y, а так як за основною логарифмічною тотожністю a log a x = x і a log a y = y, то a log a x a log a y = x y. Таким чином, a log a x + log a y = x · y, звідки за визначенням логарифму випливає рівність, що доводиться.

    Покажемо приклади використання властивості логарифму добутку: log 5 (2·3)=log 5 2+log 5 3 .

    Властивість логарифму твору можна узагальнити добуток кінцевого числа n позитивних чисел x 1 , x 2 , …, x n як log a (x 1 · x 2 · ... · x n) = log a x 1 +log a x 2 +…+log a x n . Ця рівність без проблем доводиться.

    Наприклад, натуральний логарифм твору можна замінити сумою трьох натуральних логарифмів чисел 4 , e , і .

    Логарифм приватного двох позитивних чисел x і y дорівнює різниці логарифмів цих чисел. Властивості приватного логарифму відповідає формула виду , де a>0 , a≠1 , x і y – деякі позитивні числа. Справедливість цієї формули доводиться як і формула логарифму твору: оскільки , то щодо визначення логарифму .

    Наведемо приклад використання цієї властивості логарифму: .

    Переходимо до властивості логарифму ступеня. Логарифм ступеня дорівнює добутку показника ступеня на логарифм модуля основи цього ступеня. Запишемо цю властивість логарифму ступеня у вигляді формули: log a b p = log a | b |, де a>0 , a≠1 , b та p такі числа, що ступінь b p має сенс і b p >0 .

    Спочатку доведемо цю властивість для позитивних b. Основне логарифмічне тотожність дозволяє нам уявити число b як a log a b тоді b p = (a log a b) p , а отримане вираз в силу властивість ступеня дорівнює a p · log a b . Так ми приходимо до рівності b p = a p · log a b , з якого за визначенням логарифму укладаємо, що log a b p = p · log a b .

    Залишилося довести цю властивість для негативних b. Тут зауважуємо, що вираз log a b p при негативних b має сенс лише при парних показниках ступеня p (оскільки значення ступеня b p має бути більшим за нуль, в іншому випадку логарифм не матиме сенсу), а в цьому випадку b p =|b| p. Тоді b p = | b | p = (a log a | b |) p = a p · log a | b |, Звідки log a b p = p log a | b | .

    Наприклад, і ln(-3) 4 =4·ln|-3|=4·ln3 .

    Із попередньої властивості випливає властивість логарифму з кореня: логарифм кореня n-ого ступеня дорівнює добутку дробу 1/n на логарифм підкореного виразу, тобто, , де a>0, a≠1,n - натуральне число, більше одиниці, b>0.

    Доказ базується на рівності (дивіться ), яка справедлива для будь-яких позитивних b і властивості логарифму ступеня: .

    Ось приклад використання цієї властивості: .

    Тепер доведемо формулу переходу до нової основи логарифмувиду . Для цього достатньо довести справедливість рівності log c b = log a b log c a . Основне логарифмічне тотожність дозволяє нам число b уявити як a log a b тоді log c b = log c a log a b . Залишилося скористатися властивістю логарифму ступеня: log ca log ab = log a b log c a. Так доведено рівність log c b = log a b log ca , а значить, доведено і формулу переходу до нової основи логарифму.

    Покажемо кілька прикладів застосування цієї властивості логарифмів: і .

    Формула переходу до нової основи дозволяє переходити до роботи з логарифмами, що мають «зручну» основу. Наприклад, з її допомогою можна перейти до натуральних або десяткових логарифмів, щоб можна було обчислити значення логарифму таблиці логарифмів. Формула переходу до нової основи логарифму також дозволяє в деяких випадках знаходити значення логарифму, коли відомі значення деяких логарифмів з іншими основами.

    Часто використовується окремий випадок формули переходу до нової основи логарифму при c=b виду . Звідси видно, що log ab і log ba – . Наприклад, .

    Також часто використовується формула яка зручна при знаходженні значень логарифмів. Для підтвердження своїх слів покажемо, як з її допомогою обчислюється значення логарифму . Маємо . Для доказу формули достатньо скористатися формулою переходу до нової основи логарифму a: .

    Залишилося довести властивості порівняння логарифмів.

    Доведемо, що для будь-яких позитивних чисел b1 і b2, b1 log a b 2 , а за a>1 – нерівність log a b 1

    Нарешті, залишилося довести останню з перерахованих властивостей логарифмів. Обмежимося доказом його першої частини, тобто доведемо, що якщо a 1 >1 , a 2 >1 і a 1 1 справедливо log a 1 b> log a 2 b . Інші твердження цієї властивості логарифмів доводяться за аналогічним принципом.

    Скористаємося методом від неприємного. Припустимо, що за a 1 >1 , a 2 >1 і a 1 1 справедливо log a 1 b≤log a 2 b . За властивостями логарифмів ці нерівності можна переписати як і відповідно, а з них випливає, що log b a 1 ≤ log b a 2 і log b a 1 ≥ log b a 2 відповідно. Тоді за властивостями ступенів з однаковими основами повинні виконуватися рівності b log b a 1 b log b a 2 і b log b a 1 b log b a 2 , тобто, a 1 a 2 . Так ми дійшли суперечності умові a 1

Список літератури.

  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Сьогодні ми поговоримо про формулах логарифміві дамо показові приклади рішення.

Самі собою мають на увазі шаблони рішення відповідно до основних властивостей логарифмів. Перш за все застосовувати формули логарифмів для вирішення нагадаємо для вас, спочатку всі властивості:

Тепер на основі цих формул (властивостей), покажемо приклади вирішення логарифмів.

Приклади розв'язання логарифмів виходячи з формул.

Логарифмпозитивного числа b на підставі a (позначається log a b) - це показник ступеня, в який треба звести a щоб отримати b, при цьому b > 0, a > 0, а 1.

Відповідно до визначення log a b = x, що рівносильно a x = b, тому log a a x = x.

Логарифми, Приклади:

log 28 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятковий логарифм- це звичайний логарифм, на основі якого знаходиться 10. Позначається як lg.

log 10100 = 2, т.к. 10 2 = 100

Натуральний логарифм- також звичайний логарифм логарифм, але з підставою е (е = 2,71828... - ірраціональне число). Позначається як ln.

Формули чи властивості логарифмів бажано запам'ятати, тому що вони знадобляться нам надалі при розв'язанні логарифмів, логарифмічних рівнянь та нерівностей. Давайте ще раз відпрацюємо кожну формулу на прикладах.

  • Основне логарифмічне тотожність
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм твору дорівнює сумі логарифмів.
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Логарифм приватного дорівнює різниці логарифмів
    log a (b/c) = log a b - log a c

    9 log 5 50 / 9 log 5 2 = 9 log 5 50 - log 5 2 = 9 log 5 25 = 9 2 = 81

  • Властивості ступеня логарифмованого числа та основи логарифму

    Показник ступеня логарифмованого числа log a b m = mlog a b

    Показник ступеня основи логарифму log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    якщо m = n, отримаємо log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Перехід до нової основи
    log a b = log c b/log c a,

    якщо c = b, отримаємо log b b = 1

    тоді log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Як бачите, формули логарифмів не такі складні як здаються. Тепер розглянувши приклади розв'язання логарифмів, ми можемо переходити до логарифмічних рівнянь. Приклади розв'язання логарифмічних рівнянь ми докладніше розглянемо у статті: " ". НЕ пропустіть!

Якщо у вас залишилися питання щодо вирішення, пишіть їх у коментарях до статті.

Замітка: вирішили здобути освіту іншого класу навчання за кордоном як варіант розвитку подій.


У центрі уваги цієї статті – логарифм. Тут ми дамо визначення логарифму, покажемо прийняте позначення, наведемо приклади логарифмів, і скажемо про натуральні та десяткові логарифми. Після цього розглянемо основну логарифмічну тотожність.

Навігація на сторінці.

Визначення логарифму

Поняття логарифма виникає під час вирішення завдання у сенсі зворотної , коли необхідно визначити показник ступеня за відомим значенням ступеня і відомому підставі.

Але вистачить передмов, настав час відповісти на запитання «що таке логарифм»? Дамо відповідне визначення.

Визначення.

Логарифм числа b на підставі a, де a>0 , a≠1 і b>0 – це показник ступеня, який потрібно звести число a , щоб у результаті отримати b .

На цьому етапі зауважимо, що вимовлене слово «логарифм» має відразу викликати два питання: «якого числа» і «з якої підстави». Інакше кажучи, просто логарифма немає, а є лише логарифм числа з деякому підставі.

Відразу введемо позначення логарифму: логарифм числа b на основі a прийнято позначати як log a b . Логарифм числа b на підставі e і логарифм на підставі 10 мають свої спеціальні позначення lnb і lgb відповідно, тобто, пишуть не log e b , а lnb і не log 10 b , а lgb .

Тепер можна навести: .
А записи немає сенсу, оскільки у першій їх під знаком логарифма перебуває негативне число, у другій – негативне число у підставі, а третій – і негативне число під знаком логарифму і одиниця у підставі.

Тепер скажемо про правила читання логарифмів. Запис log a b читається як «логарифм b на основі a ». Наприклад, log 2 3 - це логарифм трьох з основи 2 , а - це логарифм двох цілих двох третіх з основи квадратний корінь з п'яти. Логарифм на основі e називають натуральним логарифмома запис lnb читається як «натуральний логарифм b». Наприклад, ln7 – це натуральний логарифм семи, а ми прочитаємо як натуральний логарифм пі. Логарифм на підставі 10 також має спеціальну назву – десятковий логарифм, а запис lgb читається як «десятковий логарифм b». Наприклад, lg1 – це десятковий логарифм одиниці, а lg2,75 – десятковий логарифм двох цілих сімдесяти п'яти сотих.

Варто окремо зупинитися на умовах a>0, a≠1 і b>0, за яких дається визначення логарифму. Пояснимо, звідки беруться ці обмеження. Зробити це допоможе рівності виду , зване , яке безпосередньо випливає з цього вище визначення логарифму.

Почнемо з a≠1. Так як одиниця в будь-якій мірі дорівнює одиниці, то рівність може бути справедливою лише при b = 1, але при цьому log 1 може бути будь-яким дійсним числом. Щоб уникнути цієї багатозначності і приймається a≠1.

Обгрунтуємо доцільність умови a>0. При a = 0 за визначенням логарифму ми мали рівність , яке можливе лише за b = 0 . Але тоді log 0 0 може бути будь-яким відмінним від нуля дійсним числом, так як нуль у будь-якому відмінному від нуля ступені є нуль. Уникнути цієї багатозначності дозволяє умова a≠0. А при a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Нарешті, умова b>0 випливає з нерівності a>0 , оскільки , а значення ступеня з позитивною основою завжди позитивно.

На закінчення цього пункту скажемо, що озвучене визначення логарифму дозволяє відразу вказати значення логарифму, коли під знаком логарифму є певний ступінь підстави. Дійсно, визначення логарифму дозволяє стверджувати, що якщо b=a p , то логарифм числа b на підставі a дорівнює p . Тобто справедливо рівність log a a p = p . Наприклад, знаємо, що 2 3 =8 , тоді log 2 8=3 . Докладніше про це ми поговоримо у статті

Логарифмом числа N на підставі а називається показник ступеня х , в яку потрібно звести а , щоб отримати число N

За умови, що
,
,

З визначення логарифму випливає, що
, тобто.
- ця рівність є основною логарифмічною тотожністю.

Логарифми на підставі 10 називаються десятковими логарифмами. Замість
пишуть
.

Логарифми на підставі e називаються натуральними та позначаються
.

Основні властивості логарифмів.

    Логарифм одиниці за будь-якої підстави дорівнює нулю

    Логарифм добутку дорівнює сумі логарифмів співмножників.

3) Логарифм приватного дорівнює різниці логарифмів


Множник
називається модулем переходу від логарифмів на підставі a до логарифмів на підставі b .

За допомогою властивостей 2-5 часто вдається звести логарифм складного виразу результату простих арифметичних дій над логарифмами.

Наприклад,

Такі перетворення логарифму називаються логарифмуванням. Перетворення зворотні логарифмування називаються потенціюванням.

Розділ 2. Елементи вищої математики.

1. Межі

Межею функції
є кінцеве число А, якщо при прагненні xx 0 для кожного наперед заданого
, знайдеться таке число
, що як тільки
, то
.

Функція, що має межу, відрізняється від нього на нескінченно малу величину:
, де -б.м.в., тобто.
.

приклад. Розглянемо функцію
.

При прагненні
, функція y прагне до нуля:

1.1. Основні теореми про межі.

    Межа постійної величини дорівнює цій постійній величині

.

    Межа суми (різниці) кінцевого числа функцій дорівнює сумі (різниці) меж цих функцій.

    Межа добутку кінцевого числа функцій дорівнює добутку меж цих функцій.

    Межа частки двох функцій дорівнює приватній межі цих функцій, якщо межа знаменника не дорівнює нулю.

Чудові межі

,
, де

1.2. Приклади обчислення меж

Однак не всі межі обчислюються так просто. Найчастіше обчислення межі зводиться до розкриття невизначеності типу: або .

.

2. Похідна функції

Нехай ми маємо функцію
, безперервну на відрізку
.

Аргумент отримав деякий приріст
. Тоді і функція отримає збільшення
.

Значення аргументу відповідає значення функції
.

Значення аргументу
відповідає значення функції.

Отже, .

Знайдемо межу цього відношення при
. Якщо ця межа існує, то вона називається похідною цієї функції.

Визначення 3Виробної даної функції
за аргументом називається межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу довільним чином прагне до нуля.

Похідна функції
може бути позначена таким чином:

; ; ; .

Визначення 4Операція знаходження похідної від функції називається диференціюванням.

2.1. Механічний сенс похідної.

Розглянемо прямолінійний рух деякого твердого тіла чи матеріальної точки.

Нехай у певний момент часу точка, що рухається
знаходилась на відстані від початкового становища
.

Через деякий проміжок часу
вона перемістилася на відстань
. Ставлення =- Середня швидкість матеріальної точки
. Знайдемо межу цього відношення, враховуючи що
.

Отже визначення миттєвої швидкості руху матеріальної точки зводиться до знаходження похідної від шляху за часом.

2.2. Геометричне значення похідної

Нехай ми маємо графічно задану деяку функцію
.

Мал. 1. Геометричний зміст похідної

Якщо
, то крапка
, буде переміщатися кривою, наближаючись до точки
.

Отже
, тобто. значення похідної за даного значення аргументу чисельно дорівнює тангенсу кута утвореного дотичної в даній точці з позитивним напрямом осі
.

2.3. Таблиця основних формул диференціювання.

Ступінна функція

Показова функція

Логарифмічна функція

Тригонометрична функція

Зворотна тригонометрична функція

2.4. Правила диференціювання.

Похідна від

Похідна суми (різниці) функцій


Похідна робота двох функцій


Похідна приватного двох функцій


2.5. Похідна від складної функції.

Нехай дана функція
така, що її можна подати у вигляді

і
, де змінна є проміжним аргументом, тоді

Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу по x.

Приклад1.

Приклад2.

3. Диференціал функції.

Нехай є
, що диференціюється на деякому відрізку
і нехай у цієї функції є похідна

,

тоді можна записати

(1),

де - нескінченно мала величина,

так як при

Помножуючи всі члени рівності (1) на
маємо:

Де
- Б.М.В. вищого ладу.

Величина
називається диференціалом функції
і позначається

.

3.1. Геометричне значення диференціалу.

Нехай дана функція
.

Рис.2. Геометричний зміст диференціала.

.

Очевидно, що диференціал функції
дорівнює приросту ординати дотичної в цій точці.

3.2. Похідні та диференціали різних порядків.

Якщо є
тоді
називається першою похідною.

Похідна від першої похідної називається похідною другого порядку та записується
.

Похідний n-го порядку від функції
називається похідна (n-1)-го порядку та записується:

.

Диференціал від диференціалу функції називається другим диференціалом чи диференціалом другого порядку.

.

.

3.3 Розв'язання біологічних завдань із застосуванням диференціювання.

Задача1. Дослідження показали, що зростання колонії мікроорганізмів підпорядковується закону
, де N – чисельність мікроорганізмів (у тис.), t -Час (Дні).

б) Чи буде в цей період чисельність колонії збільшуватися чи зменшуватись?

Відповідь. Чисельність колонії збільшуватиметься.

Задача 2. Вода в озері періодично тестується контролю вмісту хвороботворних бактерій. Через t днів після тестування концентрація бактерій визначається співвідношенням

.

Коли в озері настане мінімальна концентрація бактерій і чи можна буде в ньому купатися?

РішенняФункція досягає max або min, коли її похідна дорівнює нулю.

,

Визначимо max чи min буде через 6 днів. Для цього візьмемо другу похідну.


Відповідь: Через 6 днів буде мінімальна концентрація бактерій.

Поділіться з друзями або збережіть для себе:

Завантаження...